WATTELH

HTN8G15P200H(B) 200W, 1.8 - 1500 MHz LDMOS Amplifier

Product datasheet

Description

The HTN8G15P200H(B) is an unmatched discrete LDMOS Power Amplifier with 200W saturated output power covering frequency range from 1.8 - 1500 MHz, which can be used for common transmitter and ISM application with excellent ruggedness and broadband performance.

Features

- Operating Frequency Range: 1.8 1500 MHz
- Operating Drain Voltage: 28V
- Saturation Output Power: 200W
- Excellent thermal stability due to low thermal resistance package
- Enhanced robustness design without device degradation
- Internally integrated enhanced ESD design

Applications

- Analog and Digital Broadcasting
- Private network communication base station
- Communication transmitter applications
- ISM application

Ordering Information

Part Number	Description
HTN8G15P200H(B)	Tray Package
HTN8G15P200H(B) EVB1	30-678 MHz EVB
HTN8G15P200H(B) EVB2	1300 MHz EVB

Product datasheet

Typical Performance

RF Characteristics (CW)

Freq (MHz)	Gain (dB)	Pout (dBm)	Pout(W)	Eff(%)
1300	18.24	53.34	216	69.58

Test conditions unless otherwise noted: 25 °C, VDD = +28Vdc, IDQ = 300mA, Vgs=1.98V CW test on WATECH Application Board

Absolute Maximum Ratings

Parameter	Range/Value	Unit
Drain voltage (VDss)	-0.5 to +65	V
Gate voltage (V _{GS})	-5 to +10	V
Storage Temperature (Tstg)	-55 to +150	°C
Junction Temperature (T _J)	-40 to +225	°C

Electrical Specification

Parameter	Conditions	Min	Тур	Max	Unit	
Breakdown Voltage V(BR)DSS	Vgs=0V, Ids=108uA	65	-	-	V	
Gate-Source Threshold	Vac = Vdc dc = 108uA	1.1	1.5	1.9	V	
Voltage VGS(th)	vgs-vus, ius-108uA				V	
Drain Leakage Current Ibss	Vgs=0V, Vds=28V	-	-	0.5	uA	
Gate Leakage Current Ioss	Vgs=5V, Vds=0V	-	-	0.5	uA	

DC Characteristics (Carrier)

DC Characteristics (Peak)

Parameter	Conditions	Min	Тур	Max	Unit
Breakdown Voltage V(BR)DSS	Vgs=0V, Ids=108uA	65	-	-	V
Gate-Source Threshold Voltage V _{GS(th)}	Vgs=Vds, Ids=108uA	1.1	1.5	1.9	v
Drain Leakage Current Ibss	Vgs=0V, Vds=28V	-	-	0.5	uA
Gate Leakage Current IGSS	Vgs=5V, Vds=0V	-	-	0.5	uA

Load Mismatch Test

Condition	Test Result
VSWR=10:1, at all Phase Angles, VDD = +28Vdc, IDQ= 300mA,	No Device
CW Pout =200W, Frequency1300MHz test on WATECH Application Board	Degradation

Product datasheet

Thermal Information

Parameter	Condition	Value (Typ)	Unit
Thermal Resistance	Ti-80°C massured under DC condition	0.2	°C /\\/
Junction to Case (Rтн)	IJ=80 C, measured under DC condition	0.2	C/W

Load Pull Performance (Carrier/peak)

Test conditions unless otherwise noted: 25 °C, VDD = +28Vdc, IDQ= 100mA, PW = 40us, DC= 4%

Max Output Power							
Freq (MHz)	Z_source (Ω)	Z_load [1] (Ω)	Gain (dB)	P3dB (dBm)	P3dB (W)	Eff (%)	
760	0.9-j*0.7	1.85-j*2.7	21.2	52.42	174	60.9	
1300	1.3-j*3.2	1.63-j*4.1	17.61	52.26	168	62.17	
1800	2-j*7.5	1.64-j*7.3	14.9	52.24	167	62.4	

[1] Load impedance for optimum P3dB pout

Max Drain Efficiency						
Freq (MHz)	Z_source (Ω)	Z_load [2] (Ω)	Gain (dB)	P3dB (dBm)	P3dB (W)	Eff (%)
760	0.9-j*0.7	2.2+j*0.4	24.7	49.5	89	80.87
1300	1.3-j*3.2	1.06+j*2.9	18.78	50.25	104	74.91
1800	2-j*7.5	1.4+j*6.3	17.27	51.14	130	68.52

[2] Load impedance for optimum P3dB efficiency

Z_source : Measured impedance presented to the input of the device at the package reference plane Z_load : Measured impedance presented to the output of the device at the package reference plane

HTN8G15P200H(B) 30MHz -678MHz Reference Design

EVB Layout

Bill of Materials (BoM) - HTN8G15P200H(B) 30MHz -678MHz Reference Design

Reference	Value	Description	Manufacturer	P/N
01	200W, 30- 678MHz			
QI	_	LDMOS PA	watech	
C1	47pF	MLCC and thick film	Murata	ATC100B470JT500XT
R1	51Ω	resistor	YAGEO	RC0603FR-0751RL
C2 ,C3,C14 ,C15	820pF	ATC	MLCC	ATC100B821KT
C4 ,C11,C12	4u7F	MLCC	Murata	GRM31CR71H475KA12L
C5	1nF	MLCC	ATC	ATC800B102JT50XT
C6 ,C13	390pF	MLCC	ATC	ATC100B391JT

WTE	CH	200W, 1.8 - 1500 MHz LDMOS Amplifier Product datasheet				
С7 ,С9	10uF	MLCC	Murata	GRM32EC72A106KE05		
C8	27pF	MLCC	ATC	ATC100B270JT		
C10	15pF	MLCC	ATC	CBR08C150FAGAC		
C16	470uF	Electrolytic Capacitor	Vishay	MAL203859471E3		
R1	18Ω	Thick Film Resistor	YAGEO	RC0603FR-0718RL		
R2,R3	51Ω	Thick Film Resistor	YAGEO	RC0603FR-0751RL		
Coax1	50 Ω	50 ohm 2:1,140mm	Arbitrary	Arbitrary		
Coax2,3	16.7 Ω	16.7 ohm 1:4,150mm	Arbitrary	Arbitrary		
Coax4,5	16.7 Ω	16.7 ohm 9:1,140mm	Arbitrary	Arbitrary		
E1, E2, E3	43#	Multi-Aperture COAR	Fair-Rite	2843000302		
E4	NOX20	Multi-Aperture COAR	Fair-Rite	2820000302		
РСВ	FR4 (er = 4	.2), 0.8 mm, 35 μm (1oz)				

Performance Plots HTN8G15P200H(B) 30-678MHz

Pulsed CW, Gain and Efficiency vs Pout

Test conditions unless otherwise noted: 25 °C, VDD = +28Vdc, IDQ= 300mA , Vgs= 2.00V, PW = 100us, DC= 10% test on WATECH Application Board

Product datasheet

HTN8G15P200H(B)

1300MHz Reference Design

Bill of Materials (BoM) - HTN8G15P200H(B)

1300MHz Reference Design

Reference	Value	Description	Manufacturer	P/N
Q1	-	200W, 1300MHz LDMOS PA	Watech	HTN8G15P200H(B)
C1 ,C2 ,C3	68pF	MLCC	ATC	ATC100B471JT
C4 ,C5,C14 ,C15	4u7F	MLCC	Murata	GRM31CR71H475KA12L
C6 ,C7	4p7F	MLCC	ATC	ATC100B4R7CT
C10, C10	2p4F	MLCC ATC		ATC100B2R4T
C9 ,C11 ,C12	3p3F	MLCC ATC		ATC100B3R3JT
C13	1p2F	MLCC	ATC	ATC100B1R2JT
C16 ,C17 ,C18	220pF	MLCC	ATC	ATC100B221JT
C19 ,C20	470uF	Electrolytic Capacitor	Vishay	MAL203859471E3
R1,R2	100 Ω	0805 1/4W Chip Resisto	Arbitrary	Arbitrary
Coax1,2	25 Ω	25 ohm 2:1,140mm	Arbitrary	Arbitrary
L1,L2	AWG16	Cable D=1.29mm	Arbitrary	Arbitrary
L3,L3	AWG16	Cable D=1.29mm	Arbitrary	Arbitrary
РСВ	FR4 (er = 4.2), 0.8 mm, 35 μm (1oz)			

Product datasheet

Performance Plots HTN8G15P200H(B) 1300MHz

WATECH

Pulsed CW, Gain and Efficiency vs Pout

Test conditions unless otherwise noted: 25 °C, VDD = +28Vdc, IDQ= 300mA, Vgs 1.98V, CW test on WATECH Application Board

Package Marking and Dimensions

- Line1 (fixed): Device name in work order
- Line2 (unfixed): Mark Lot number in work order (Sample: E596-EERA0001)
- Line3 (unfixed): Date Code + "SS" (The last two digits of sub lot Number)

This Marking SPEC only stipulates the content of Marking. For marking requirements such as font and size, please refer to the latest version of "Watech Product Printing Specification"

Marking

Remark: 1.Unit: mm; 2.Unlabeled tolerance is \pm 0.13mm.

Remark: 1.Unit: mm; 2.Unlabeled tolerance is \pm 0.13mm.

ACC2110B-4L; Flanged Balanced Air Cavity Ceramic Package; 2 Mounting holes, 4 Leads Package Dimensions

Product datasheet

Tape and Reel Information

HTN8G15P200H:

Packaging Descriptions

HTN8G15P200HB:

Package Type	Qty/Tray(pcs)	Qty/Box(pcs)	Qty/Carton(pcs)
ACC2110B-4L	18	90	540
			202 00.10

Packaging Descriptions

WATTERH

HTN8G15P200H(B) 200W, 1.8 - 1500 MHz LDMOS Amplifier

Product datasheet

Handling Precautions

Parameter	Grade	
Moisture Sensitivity Level MSL	3	

Parameter	Rating	Standard	
ESD – Human Body Model (HBM)	Class 1B	JESD22-A114	
ESD–Me Model (MM)	Class A	EIA/JESD22-A115	FOR HANDLING ELECTROSTATIC SENSTIVE DEVICES
ESD-Charged Device Model (CDM)	Class III	JESD22-C101	

RoHS Compliance

This product is compliant with the 2011/65/EU RoHS directive (Restrictions on the Use of Certain Hazardous Substances in Electrical and Electronic Equipment), as amended by Directive 2015/863/EU.

Datasheet Status

Document status	Product status	Definition	
Objective Datasheet	Design simulation	Product objective specification	
Preliminary Datasheet	Customer sample	Engineering samples and first test results	
Product Datasheet	Mass production	Final product specification	

Abbreviations

Acronym	Definition
LDMOS	Laterally-Diffused Metal-Oxide Semiconductor
CW	Continuous Waveform

Revision history

Document ID	Datasheet Status	Release Date	Revision Version
Rev 1.0	Product	Apr. 2024	New product revision

Product datasheet

For the latest specifications, additional product information, worldwide sales and distribution locations and information about WATECH:

- Web: <u>www.watechelectronics.com</u>
- Email: <u>MKT@huatai-elec.com</u>

For technical questions and application information:

• Email: <u>MKT@huatai-elec.com</u>

Important Notice

Information in this document is believed to be accurate and reliable. However, WATECH does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

"Typical" parameters are the average values expected by WATECH in large quantities and are provided for information purposes only. All information and specifications contained herein are subject to change without notice and customers should obtain and verify the latest relevant information before placing orders for WATECH products.

The information contained herein or any use of such information does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other intellectual property rights, whether with regard to such information itself or anything described by such information.

Applications that are described herein for any of these products are for illustrative purposes only. WATECH makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification. Customers are responsible for the design and operation of their applications and products using WATECH products, and WATECH accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the WATECH product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third-party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

WATECH products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety- critical systems or equipment, nor in applications where failure or malfunction of a WATECH product can reasonably be expected to result in personal injury, death or severe property or environmental damage. This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.